赵地教授从深度学习的技术在人类的4大病种(臂丛神经、关节、乳腺、脂肪肝)影像中的前沿应用和大家分享了团队的研究成果。
医学影像是一个非常热门的领域。超声成像不仅仅是超声仪器的小型化,还可以和移动计算、云计算结合,在这样的情况下,应用场景就会大大拓展。
赵地博士在授课过程中提到了特征强调的概念:机器学习都要进行特征工程的选取,再进行相关算法的训练。特征强调不需要选择具体的特征,研究人员可以强调某一部分的特征,进行得到更精确的检测结果。这个概念对于后续的深度学习算法的设计有非常好的作用,特别是在医学影像分析方面。
嘉宾介绍
赵地:中国科学院计算机网络信息中心(CNIC),百人计划,副研究员
中国科学院计算机网络信息中心“百人计划”赵地博士毕业于美国路易斯安娜理工大学,并在美国哥伦比亚大学和OSU从事博士后研究,在人工智能的医学应用工作十余年。赵地老师带领的脑科学计算研究课题组与NVIDIA成立“GPU教育中心”及“智慧医疗联合实验室”。
该团队针对人类典型性疾病的早期诊断和治疗展开研究,提出众多解决方案并取得一系列成果。针对北京市乃至全国人口老龄化问题,赵地老师与首都医科大学天坛医院及宣武医院合作,率先在国内开展了基于医学领域知识及深度学习的阿尔茨海默病早期诊断的研究,承担了北京市自然科学基金重点项目及北京市科技重大专项等多项课题。
同时,该课题组已与国内十几家医院合作,在HIV引起的认知障碍、血管性认知障碍、肺癌筛查、颈动脉超声识别、前列腺癌智能诊断、糖网鉴别等诸多领域展开深入研究,并取得了一系列突出成果。
课程内容:
如何在医学影像分析中应用好深度学习
基于深度学习的臂丛神经识别
基于深度学习的关节智能识别
基于深度学习的乳腺超声影像分析
基于深度学习的脂肪肝超声影像分析
以下内容节选自赵地博士课程
雷锋网AI掘金志了解到,外科手术已经成为日常医疗过程中不可缺少的治疗手段,但是随之而来的是外科手术对病患身体与精神上的巨大创伤,特别是手术中及术后护理过程中的疼痛对病人有着极大的精神压力。
因此,为了缓解术中与术后疼痛,现在广泛使用各种麻醉方式进行镇痛。但是这也不可避免的带来副作用,特别是麻醉药剂对神经系统的损害,因此为了提高麻醉效果,并且减小麻醉药剂使用量,局部麻醉中药剂注射部位精准度就成为关键。超声设备在现代医学检测中有着广泛的应用,其主要优势有:便于移动;无创伤;价格低廉;没有辐射。但是超声也有缺点:分辨率弱于CT;检查结果易受医师水平影响。
赵地表示,在上肢手术与术后护理中,臂丛神经阻滞是一种常用的局部麻醉方式,为了精确确定臂丛神经位置,现在广泛应用超声设备对神经系统进行检测和定位。
由于臂丛神经超声图像是识别神经结构和位置的重要来源,因此超声图像识别准确度直接影响注射针头或者留置导管介入,而传统的超声图像识别是基于医生或者护士的经验,所以介入精度受到人为因素影响。
为了使计算机能够模拟医生,向医生学习,赵地博士团队采用直接模拟“人”的方式入手,模拟人类大脑和视觉系统机理,从而实现把医生在治疗过程中问询,结合化验结果,检查和诊断结论等知识放入计算机中。
针对介入精度受人为因素影响等问题,赵地博士团队提出了一种基于深度学习(Deep Learning, DL) 中卷积神经网络(Convolutional Neural Network ,CNN )架构的SegNet改进模型,用该模型训练臂丛神经超声图像数据,找出臂丛神经组织特征,进行臂丛神经组织自动检测与分割。
他表示,Segnet的优点是分割的精度比较高,可以辅助麻醉手术甚至是远程医疗,缺点是运算量比较大,需要高性能的设备支撑。
此外,赵地博士团队的基于Segnet的臂丛神经检测的训练精度可以达到96%,基本满足临床上对于臂丛神经超声影像分析的需求。